MATH 201: Calculus and Analytic Geometry III Fall 2018-2019, Exam 2, Duration: 60 min.

Problem	1	2	3	4	5	6	Total
Points	14	21	15	10	18	22	100
Scores							-

INSTRUCTIONS:

- (a) Explain your answers precisely and clearly to ensure full credit.
- (b) Closed book. No notes. No calculators. No cellphones.
- (c) UNLESS CLEARLY SPECIFIED OTHERWISE, THE BACKSIDE OF THE PAGES WILL NOT BE GRADED.

Problem 2 (a) (7 pts) Does

$$\lim_{(x,y)\to(0,0)} \frac{2y^2 \sin^2 x}{\sqrt{x^4 + y^2}}$$

exist? Justify your answer.

(b) (7 pts) What about

$$\lim_{(x,y)\to(0,0)}\frac{xy}{y-2x}?$$

Justify your answer.

$$f(x,y) = \begin{cases} \frac{x^4 y^4}{x^2 + y^2} & if(x,y) \neq (0,0) \\ 0 & if(x,y) = (0,0) \end{cases}$$

Decide if f(x, y) is continuous at (0, 0) or not. Justify your answer.

Problem 4

(10 pts) Let f(x, y, z) be a differentiable function of three variables. Suppose that

$$\nabla f(2,1,2) = 6i + 3j + 3k$$
 and $\nabla f(1,1,2) = i - 2j + 5k$.

Let
$$\begin{cases} x = r^2 + s \\ y = \frac{r}{s} \\ z = 2r + \ln \frac{r}{s} \\ and \quad w(r,s) = f(x,y,z) \end{cases}$$
Find $\frac{\partial w}{\partial r}$ and $\frac{\partial w}{\partial s}$ at the point $(r,s) = (1,1)$.

Find
$$\frac{\partial w}{\partial r}$$
 and $\frac{\partial w}{\partial s}$ at the point $(r,s) = (1,1)$

Problem 6

Let L be the line y = 2x - 7 in the xy-plane.

Suppose f(x, y) is a differentiable function of two variables satisfying

- f(x,y)=2 for all $(x,y) \in L$.
- $\nabla f(0,-7) = 4i 2j$.
- $D_u f(3.-1) = \sqrt{5}$, where $u = \frac{2}{\sqrt{5}} \mathbf{i} \frac{1}{\sqrt{5}} \mathbf{j}$.
- (a) (10 pts) Estimate f(0.03, -6.96).

(b) (8 pts) Find $\nabla f(3,-1)$.

(c) (4 pts) Suppose that f is also constant on the line y = x - 2. Find $\nabla f(5,3)$.